Gene Prioritization for Imaging Genetics Studies Using Gene Ontology and a Stratified False Discovery Rate Approach
نویسندگان
چکیده
Imaging genetics is an emerging field in which the association between genes and neuroimaging-based quantitative phenotypes are used to explore the functional role of genes in neuroanatomy and neurophysiology in the context of healthy function and neuropsychiatric disorders. The main obstacle for researchers in the field is the high dimensionality of the data in both the imaging phenotypes and the genetic variants commonly typed. In this article, we develop a novel method that utilizes Gene Ontology, an online database, to select and prioritize certain genes, employing a stratified false discovery rate (sFDR) approach to investigate their associations with imaging phenotypes. sFDR has the potential to increase power in genome wide association studies (GWAS), and is quickly gaining traction as a method for multiple testing correction. Our novel approach addresses both the pressing need in genetic research to move beyond candidate gene studies, while not being overburdened with a loss of power due to multiple testing. As an example of our methodology, we perform a GWAS of hippocampal volume using both the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA2) and the Alzheimer's Disease Neuroimaging Initiative datasets. The analysis of ENIGMA2 data yielded a set of SNPs with sFDR values between 10 and 20%. Our approach demonstrates a potential method to prioritize genes based on biological systems impaired in a disease.
منابع مشابه
Identification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks
Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...
متن کاملIdentification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis
Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...
متن کاملNovel bioinformatics approach to investigate quantitative phenotype - genotype associations in 1 neuroimaging studies
36 Imaging genetics is an emerging field in which the association between genes and neuroimaging37 based quantitative phenotypes are used to explore the functional role of genes in neuroanatomy and 38 neurophysiology in the context of healthy function and neuropsychiatric disorders. The main obstacle 39 for researchers in the field is the high dimensionality of the data in both the imaging phen...
متن کاملIntegrating Computational Biology and Forward Genetics in Drosophila
Genetic screens are powerful methods for the discovery of gene-phenotype associations. However, a systems biology approach to genetics must leverage the massive amount of "omics" data to enhance the power and speed of functional gene discovery in vivo. Thus far, few computational methods for gene function prediction have been rigorously tested for their performance on a genome-wide scale in viv...
متن کاملEfficacy of insulin targeted gene therapy for type 1 diabetes mellitus: A systematic review and meta-analysis of rodent studies
Objective(s): Diabetes mellitus (DM) is a major worldwide public health challenge, for which gene therapy offers a potential therapeutic approach. To date, no systematic review or meta-analysis has been published in this area, so we examined all relevant published studies on rodents to elucidate the overall effects of gene therapy on bodyweight, intraperitoneal glucose...
متن کامل